Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.316
Filtrar
1.
Front Immunol ; 15: 1373435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601151

RESUMO

Introduction: The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation. Our aim was to evaluate CBD immune-modulatory effects in peripheral blood mononuclear cells (PBMC) of psoriasis individuals with particular attention to both innate and adaptative immune arms. Methods: We performed in vitro immune functional experiments to analyze CBD action on various immune cells active in psoriatic lesions. Results: The results showed that CBD produced a shift from Th1 to Th2 response, while boosting cytotoxic activity of Natural Killer (NK) cells. Furthermore, it also exerted a potent action on monocyte differentiation as, after CBD treatment, monocytes from psoriatic individuals were unable to migrate in response to inflammatory stimuli and to fully differentiate into mature dendritic cells. Finally, a M2 skewing of monocyte-derived macrophages by CBD also contributed to the fine tuning of the magnitude of immune responses. Conclusions: These data uncover new potential immunomodulatory properties of this cannabinoid suggesting a possible therapeutic action in the treatment of multiple inflammatory skin diseases.


Assuntos
Canabidiol , Canabinoides , Psoríase , Humanos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Leucócitos Mononucleares , Psoríase/tratamento farmacológico , Endocanabinoides
2.
BMC Pregnancy Childbirth ; 24(1): 263, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605299

RESUMO

BACKGROUND: Children exposed prenatally to alcohol or cannabinoids individually can exhibit growth deficits and increased risk for adverse birth outcomes. However, these drugs are often co-consumed and their combined effects on early brain development are virtually unknown. The blood vessels of the fetal brain emerge and mature during the neurogenic period to support nutritional needs of the rapidly growing brain, and teratogenic exposure during this gestational window may therefore impair fetal cerebrovascular development. STUDY DESIGN: To determine whether prenatal polysubstance exposure confers additional risk for impaired fetal-directed blood flow, we performed high resolution in vivo ultrasound imaging in C57Bl/6J pregnant mice. After pregnancy confirmation, dams were randomly assigned to one of four groups: drug-free control, alcohol-exposed, cannabinoid-exposed or alcohol-and-cannabinoid-exposed. Drug exposure occurred daily between Gestational Days 12-15, equivalent to the transition between the first and second trimesters in humans. Dams first received an intraperitoneal injection of either cannabinoid agonist CP-55,940 (750 µg/kg) or volume-equivalent vehicle. Then, dams were placed in vapor chambers for 30 min of inhalation of either ethanol or room air. Dams underwent ultrasound imaging on three days of pregnancy: Gestational Day 11 (pre-exposure), Gestational Day 13.5 (peri-exposure) and Gestational Day 16 (post-exposure). RESULTS: All drug exposures decreased fetal cranial blood flow 24-hours after the final exposure episode, though combined alcohol and cannabinoid co-exposure reduced internal carotid artery blood flow relative to all other exposures. Umbilical artery metrics were not affected by drug exposure, indicating a specific vulnerability of fetal cranial circulation. Cannabinoid exposure significantly reduced cerebroplacental ratios, mirroring prior findings in cannabis-exposed human fetuses. Post-exposure cerebroplacental ratios significantly predicted subsequent perinatal mortality (p = 0.019, area under the curve, 0.772; sensitivity, 81%; specificity, 85.70%) and retroactively diagnosed prior drug exposure (p = 0.005; AUC, 0.861; sensitivity, 86.40%; specificity, 66.7%). CONCLUSIONS: Fetal cerebrovasculature is significantly impaired by exposure to alcohol or cannabinoids, and co-exposure confers additional risk for adverse birth outcomes. Considering the rising potency and global availability of cannabis products, there is an imperative for research to explore translational models of prenatal drug exposure, including polysubstance models, to inform appropriate strategies for treatment and care in pregnancies affected by drug exposure.


Assuntos
Canabinoides , Morte Perinatal , Gravidez , Camundongos , Feminino , Animais , Criança , Humanos , Canabinoides/efeitos adversos , Mortalidade Perinatal , Etanol/efeitos adversos , Feto/irrigação sanguínea , Modelos Animais de Doenças , Circulação Cerebrovascular
3.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569457

RESUMO

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Assuntos
Canabinoides , Cannabis , Cannabis/genética , Cannabis/química , Canabinoides/farmacologia , Dronabinol/farmacologia , Metilação de DNA , Raios Ultravioleta , Proliferação de Células
4.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632206

RESUMO

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Assuntos
Canabinoides , Cannabis , RNA Antissenso/análise , RNA Antissenso/genética , RNA Antissenso/metabolismo , Cannabis/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Genoma de Planta
5.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611847

RESUMO

Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O' and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.


Assuntos
Canabidiol , Canabinoides , Cannabis , Células-Tronco Mesenquimais , Extratos Vegetais , Humanos , Canabinoides/farmacologia , Canabidiol/farmacologia , PPAR gama , Endocanabinoides , Tecido Adiposo Marrom , RNA Mensageiro
6.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612415

RESUMO

The endogenous cannabinoid system (ECS) plays a critical role in the regulation of various physiological functions, including sleep, mood, and neuroinflammation. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinomimimetics, and some N-acylethanolamides, particularly palmitoyethanolamide, have emerged as potential therapeutic agents for the management of sleep disorders. THC, the psychoactive component of cannabis, may initially promote sleep, but, in the long term, alters sleep architecture, while CBD shows promise in improving sleep quality without psychoactive effects. Clinical studies suggest that CBD modulates endocannabinoid signaling through several receptor sites, offering a multifaceted approach to sleep regulation. Similarly, palmitoylethanolamide (PEA), in addition to interacting with the endocannabinoid system, acts as an agonist on peroxisome proliferator-activated receptors (PPARs). The favorable safety profile of CBD and PEA and the potential for long-term use make them an attractive alternative to conventional pharmacotherapy. The integration of the latter two compounds into comprehensive treatment strategies, together with cognitive-behavioral therapy for insomnia (CBT-I), represents a holistic approach to address the multifactorial nature of sleep disorders. Further research is needed to establish the optimal dosage, safety, and efficacy in different patient populations, but the therapeutic potential of CBD and PEA offers hope for improved sleep quality and general well-being.


Assuntos
Canabidiol , Canabinoides , Transtornos do Sono-Vigília , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Sono
7.
Physiol Behav ; 277: 114506, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432442

RESUMO

The cannabinoid system plays a key role in stress-related emotional symptoms such as anxiety. Citicoline is a supplemental substance with neuroprotective properties that alleviates anxiety-related behaviors. There is a relation between the actions of cannabinoids and cholinergic systems. So, we decided to evaluate the effects of intracerebroventricular (i.c.v.) infusion of cannabinoid CB1 receptor agents on citicoline-produced response to anxiety-like behaviors in the non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. For i.c.v. microinjection of drugs, a guide cannula was inserted in the left lateral ventricle. ARS was induced by movement restraint for 4 h. Anxiety-related behaviors were assessed using an elevated plus maze (EPM). The results showed that induction of ARS for 4 h decreased the percentage of time spent in the open arms (%OAT) and the percentage of entries to the open arms (%OAE) without affecting locomotor activity, showing anxiogenic-like behaviors. i.c.v. infusion of ACPA (1 µg/mouse) induced an anxiolytic-like effect due to the enhancement of %OAT in the NARS and ARS mice. Nonetheless, i.c.v. microinjection of AM251 (1 µg/mouse) decreased %OAT in the NARS and ARS mice which suggested an anxiogenic-like response. Intraperitoneal (i.p.) administration of citicoline (80 mg/kg) induced an anxiolytic-like effect by the augmentation of %OAT in the ARS mice. Furthermore, when ACPA and citicoline were co-administrated, ACPA potentiated the anxiolytic-like effect induced by citicoline in the NARS and ARS mice. On the other hand, when AM251 and the citicoline were co-injected, AM251 reversed the anxiolytic-like response induced by the citicoline in the NARS and ARS mice. The results of this research exhibited an additive effect between citicoline and ACPA on the induction of anxiolytic-like response in the NARS and ARS mice. Our results indicated an interaction between citicoline and cannabinoid CB1 receptor drugs on the control of anxiety-like behaviors in the NARS and ARS mice.


Assuntos
Ansiolíticos , Canabinoides , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Citidina Difosfato Colina , Receptor CB1 de Canabinoide , Ansiedade/etiologia , Ansiedade/induzido quimicamente , Canabinoides/farmacologia
8.
J Med Chem ; 67(5): 3274-3286, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428383

RESUMO

Cannabis sativa has a long history of medicinal use, dating back to ancient times. This plant produces cannabinoids, which are now known to interact with several human proteins, including Cys-loop receptors for glycine (GlyR) and gamma-aminobutyric acid (GABAAR). As these channels are the primary mediators of inhibitory signals, they contribute to the diverse effects of cannabinoids on the nervous system. Evidence suggests that cannabinoid binding sites are located within the transmembrane domain, although their precise location has remained undetermined for over a decade. The process of identification of the binding site and the computational approaches employed are the main subjects of this Perspective, which includes an analysis of the most recently resolved cryo-EM structures of zebrafish GlyR bound to Δ9-tetrahydrocannabinol and the THC-GlyR complex obtained through molecular dynamics simulations. With this work, we aim to contribute to guiding future studies investigating the molecular basis of cannabinoid action on inhibitory channels.


Assuntos
Canabinoides , Cannabis , Animais , Humanos , Canabinoides/farmacologia , Peixe-Zebra , Sítios de Ligação , Simulação de Dinâmica Molecular , Dronabinol
9.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542886

RESUMO

Cannabis sativa is one of the oldest plants utilized by humans for both economic and medical purposes. Although the use of cannabis started millennia ago in the Eastern hemisphere, its use has moved and flourished in the Western nations in more recent centuries. C. sativa is the source of psychoactive cannabinoids that are consumed as recreational drugs worldwide. The C21 aromatic hydrocarbons are restricted in their natural occurrence to cannabis (with a few exceptions). Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component in cannabis, with many pharmacological effects and various approved medical applications. However, a wide range of side effects are associated with the use of Δ9-THC, limiting its medical use. In 1966, another psychoactive cannabinoid, Delta-8-tetrahydrocannabinol (Δ8-THC) was isolated from marijuana grown in Maryland but in very low yield. Δ8-THC is gaining increased popularity due to its better stability and easier synthetic manufacturing procedures compared to Δ9-THC. The passing of the U.S. Farm Bill in 2018 led to an increase in the sale of Δ8-THC in the United States. The marketed products contain Δ8-THC from synthetic sources. In this review, methods of extraction, purification, and structure elucidation of Δ8-THC will be presented. The issue of whether Δ8-THC is a natural compound or an artifact will be discussed, and the different strategies for its chemical synthesis will be presented. Δ8-THC of synthetic origin is expected to contain some impurities due to residual amounts of starting materials and reagents, as well as side products of the reactions. The various methods of analysis and detection of impurities present in the marketed products will be discussed. The pharmacological effects of Δ8-THC, including its interaction with CB1 and CB2 cannabinoid receptors in comparison with Δ9-THC, will be reviewed.


Assuntos
Canabinoides , Cannabis , Dronabinol/análogos & derivados , Alucinógenos , Humanos , Dronabinol/farmacologia , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Alucinógenos/farmacologia
10.
Adv Nutr ; 15(4): 100196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432590

RESUMO

Cannabis use has increased sharply in the last 20 y among adults, including reproductive-aged women. Its recent widespread legalization is associated with a decrease in risk perception of cannabis use during breastfeeding. However, the effect of cannabis use (if any) on milk production and milk composition is not known. This narrative review summarizes current knowledge related to maternal cannabis use during breastfeeding and provides an overview of possible pathways whereby cannabis might affect milk composition and production. Several studies have demonstrated that cannabinoids and their metabolites are detectable in human milk produced by mothers who use cannabis. Due to their physicochemical properties, cannabinoids are stored in adipose tissue, can easily reach the mammary gland, and can be secreted in milk. Moreover, cannabinoid receptors are present in adipocytes and mammary epithelial cells. The activation of these receptors directly modulates fatty acid metabolism, potentially causing changes in milk fatty acid profiles. Additionally, the endocannabinoid system is intimately connected to the endocrine system. As such, it is probable that interactions of exogenous cannabinoids with the endocannabinoid system might modify release of critical hormones (e.g., prolactin and dopamine) that regulate milk production and secretion. Nonetheless, few studies have investigated effects of cannabis use (including on milk production and composition) in lactating women. Additional research utilizing robust methodologies are needed to elucidate whether and how cannabis use affects human milk production and composition.


Assuntos
Canabinoides , Cannabis , Adulto , Feminino , Humanos , Animais , Lactação , Leite Humano/química , Aleitamento Materno , Endocanabinoides/análise , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Leite/química , Canabinoides/farmacologia , Canabinoides/análise , Canabinoides/metabolismo , Ácidos Graxos/farmacologia
11.
Pharmacol Rep ; 76(2): 223-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457018

RESUMO

Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Canabinoides , Glioblastoma , Glioma , Humanos , Camundongos , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Endocanabinoides/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia
12.
Reprod Toxicol ; 125: 108575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462211

RESUMO

The generally undesired effects of exocannabinoids on male reproduction include alterations in testicular cell proliferation and function, as well as apoptosis induction. However, this paradigm has been challenged by the ability of endocannabinoids to regulate reproductive function. The present study addresses these paradoxical facts by investigating the effects of the endocannabinoid 2-arachidonoyl glycerol (2-AG) on mouse Sertoli cells' survival and apoptosis, with a mechanistic insight into Sertoli cell-based growth factors' production. The Mus musculus Sertoli cell line (TM4) was exposed to different concentrations of 2-AG, and cell viability was evaluated using MTT assay. Growth factors' gene and protein expressions were analyzed through RT-PCR and western blotting. 2-AG concentration dependently increased TM4 viability, with a slight increase starting at 0.0001 µM, a peak of 190% of the control level at 1 µM, and a decrease at 3 µM. Moreover, 2-AG paradoxically altered mRNA expression of caspase-3 and growth factors. Caspase-3 mRNA expression was down-regulated, and growth factors mRNA and protein expression were up-regulated when using a low concentration of 2-AG (1 µM). Opposite effects were observed by a higher concentration of 2-AG (3 µM). These paradoxical effects of 2-AG can be explained through the concept of hormesis. The results indicate the pivotal role of 2-AG in mediating Sertoli cell viability and apoptosis, at least in part, through altering growth factors secretion. Furthermore, they suggest the involvement of endocannabinoids in Sertoli cell-based physiological and pathological conditions and reflect the ability of abnormally elevated 2-AG to mimic the actions of exocannabinoids in reproductive dysfunction.


Assuntos
Canabinoides , Endocanabinoides , Camundongos , Animais , Masculino , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Células de Sertoli , Caspase 3/metabolismo , Glicerol/metabolismo , Glicerol/farmacologia , Hormese , Sobrevivência Celular , Apoptose , RNA Mensageiro/metabolismo , Fertilidade , Células Cultivadas
13.
Basic Clin Pharmacol Toxicol ; 134(5): 574-601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477419

RESUMO

Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.


Assuntos
Canabidiol , Canabinoides , Epilepsia , Transtornos Mentais , Esclerose Múltipla , Doença de Parkinson , Humanos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Receptor 5-HT1A de Serotonina/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Epilepsia/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Comorbidade
14.
Asian Pac J Cancer Prev ; 25(3): 839-856, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546067

RESUMO

OBJECTIVE: The purpose of this study is to comparatively analyze the anticancer properties of Tetrahydrocannabinol (THC), Cannabidiol (CBD), and Tetrahydrocannabivarin (THCV) using In silico tools. METHODS: Using SwissADME and pkCSM, the physicochemical and pharmacokinetics properties of the cannabinoids were evaluated. Protox-II was utilized for the assessment of their cytotoxicity. The chemical-biological interactions of the cannabinoids were also predicted using the Way2Drug Predictive Server which comprises Acute Rat Toxicity, Adver-Pred, CLC-Pred, and Pass Target Prediction. RESULTS: Both physicochemical and drug-likeness analysis using SwissADME favored THCV due to high water solubility and lower MLOGP value. On the other hand, ADMET assessment demonstrated that THC and CBD have good skin permeability while both THC and THCV exhibited better BBB permeability and have low inhibitory activity on the CYP1A2 enzyme. Furthermore, toxicity predictions by Protox-II revealed that CBD has the lowest probability of hepatotoxicity, carcinogenicity, and immunotoxicity. Contrarily, it has the highest probability of being inactive in mutagenicity and cytotoxicity. Additionally, CLC results revealed that CBD has the highest probability against lung carcinoma. The rat toxicity prediction showed that among the cannabinoids, THCV had the lowest LD50 concentration in rat oral and IV. CONCLUSION: Overall, in silico predictions of the three cannabinoid compounds revealed that they are good candidates for oral drug formulation. Among the three cannabinoids, THCV is an excellent anticancer aspirant for future chemotherapy with the most favorable results in drug-likeness and ADMET analysis, pharmacological properties evaluation, and cytotoxicity assessment results. Further study on bioevaluation of compounds is needed to elucidate their potential pharmacological activities.


Assuntos
Canabidiol , Canabinoides , Ratos , Animais , Canabidiol/farmacologia , Dronabinol/farmacologia , Protoporfirinogênio Oxidase , Canabinoides/farmacologia , Avaliação de Resultados em Cuidados de Saúde
15.
Transl Psychiatry ; 14(1): 170, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555299

RESUMO

Chronic stress is a major risk factor for neuropsychiatric conditions such as depression. Adult hippocampal neurogenesis (AHN) has emerged as a promising target to counteract stress-related disorders given the ability of newborn neurons to facilitate endogenous plasticity. Recent data sheds light on the interaction between cannabinoids and neurotrophic factors underlying the regulation of AHN, with important effects on cognitive plasticity and emotional flexibility. Since physical exercise (PE) is known to enhance neurotrophic factor levels, we hypothesised that PE could engage with cannabinoids to influence AHN and that this would result in beneficial effects under stressful conditions. We therefore investigated the actions of modulating cannabinoid type 2 receptors (CB2R), which are devoid of psychotropic effects, in combination with PE in chronically stressed animals. We found that CB2R inhibition, but not CB2R activation, in combination with PE significantly ameliorated stress-evoked emotional changes and cognitive deficits. Importantly, this combined strategy critically shaped stress-induced changes in AHN dynamics, leading to a significant increase in the rates of cell proliferation and differentiation of newborn neurons, overall reduction in neuroinflammation, and increased hippocampal levels of BDNF. Together, these results show that CB2Rs are crucial regulators of the beneficial effects of PE in countering the effects of chronic stress. Our work emphasises the importance of understanding the mechanisms behind the actions of cannabinoids and PE and provides a framework for future therapeutic strategies to treat stress-related disorders that capitalise on lifestyle interventions complemented with endocannabinoid pharmacomodulation.


Assuntos
Canabinoides , Animais , Canabinoides/farmacologia , Receptores de Canabinoides , Exercício Físico , Hipocampo , Neurogênese/fisiologia , Antidepressivos/farmacologia
16.
Biomolecules ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540753

RESUMO

BACKGROUND: Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, the exact mechanism has not been clarified. The objective of this study is to demonstrate that activation of microglial CB2 receptors can effectively reduce the levels of TNF-α, IL-1ß, and IL-6 in the paraventricular nucleus (PVN) through inhibiting aerobic glycolysis, thereby relieving hypertension. METHODS: AngiotensinII (AngII) was administered to BV2 cells and C57 mice to induce hypertension and the release of proinflammatory cytokines. The mRNA and protein expression of the CB2 receptor, TNF-α, IL-1ß, IL-6, and the PFK and LDHa enzymes were detected using RT-qPCR and Western blotting. The Seahorse XF Energy Metabolism Analyzer was used to measure the oxidative phosphorylation and aerobic glycolysis metabolic pathways in BV2 cells. The long-term effects of injecting JWH133, a selective CB2 receptor agonist, intraperitoneally on blood pressure were ascertained. ELISA was used to measure norepinephrine and lactic acid levels while immunofluorescence labeling was used to locate the CB2 receptor and c-Fos. By injecting pAAV-F4/80-GFP-mir30shRNA (AAV2-r-CB2shRNA) into the lateral cerebral ventricle, the CB2 receptor in microglia was specifically knocked down. RESULTS: Activation of CB2 receptors by the agonist JWH133 suppressed TNF-α, IL-1ß, and IL-6 by inhibiting PFK and LDHa enzymes involved in glycolysis, as well as lactic acid accumulation, along with a reduction in glycoPER levels (marks of aerobic glycolysis) in AngII-treated BV2 cells. In AngII-treated mice, the administration of JWH133 specifically activated CB2 receptors on microglia, resulting in decreased expression levels of PFK, LDHa, TNF-α, IL-1ß, and IL-6, subsequently leading to a decrease in c-Fos protein expression within PVN neurons as well as reduced norepinephrine levels in plasma, ultimately contributing to blood pressure reduction. CONCLUSION: The results suggest that activation of the microglia CB2 receptor decreases the neuroinflammation to relieve hypertension; the underlying mechanism is related to inhibiting aerobic glycolysis of microglia.


Assuntos
Canabinoides , Hipertensão , Ratos , Camundongos , Animais , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Microglia/metabolismo , Interleucina-6/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Ratos Endogâmicos SHR , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Glicólise , Ácido Láctico/metabolismo , Norepinefrina/metabolismo
17.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542057

RESUMO

This study investigates the impact of SCs consumption by assessing the effects of three novel synthetic cannabinoids (SCs); MDMB-CHMINACA, 5F-ADB-PINACA, and APICA post-drug treatment. SCs are known for their rapid onset (<1 min) and prolonged duration (≥5 h). Therefore, this research aimed to assess behavioral responses and their correlation with endocannabinoids (ECs) accumulation in the hippocampus, and EC's metabolic enzymes alteration at different timeframes (1-3-5-h) following drug administration. Different extents of locomotive disruption and sustained anxiety-like symptoms were observed throughout all-encompassing timeframes of drug administration. Notably, MDMB-CHMINACA induced significant memory impairment at 1 and 3 h. Elevated levels of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were detected 1 h post-MDMB-CHMINACA and 5F-ADB-PINACA administration. Reduced mRNA expression levels of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL) (AEA and 2-AG degrading enzymes, respectively), and brain-derived neurotrophic factor (BDNF) occurred at 1 h, with FAAH levels remaining reduced at 3 h. These findings suggest a connection between increased EC content and decreased BDNF expression following SC exposure. Cognitive disruption, particularly motor coordination decline and progressive loss manifested in a time-dependent manner across all the analyzed SCs. Our study highlights the importance of adopting a temporal framework when assessing the effects of SCs.


Assuntos
Canabinoides , Drogas Ilícitas , Endocanabinoides , Fator Neurotrófico Derivado do Encéfalo/genética , Canabinoides/farmacologia , Canabinoides/metabolismo , Drogas Ilícitas/metabolismo
18.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542186

RESUMO

Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches.


Assuntos
Canabinoides , Maconha Medicinal , Humanos , Endocanabinoides , Diester Fosfórico Hidrolases/metabolismo , Lisofosfolipídeos/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico
19.
J Chromatogr A ; 1720: 464810, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471299

RESUMO

Nowadays, the higher peak capacity achievable by comprehensive two-dimensional liquid chromatography (LC×LC) for the analysis of vegetal samples is well-recognized. In addition, numerous compounds may be present in very different amounts. Cannabinoids and terpenes represent the main components of Cannabis sativa inflorescence samples, whose quantities are relevant for many application purposes. The analyses of both families are performed by different methods, at least two different separation methodologies, mainly according to their chemical characteristics and concentration levels. In this work, concentration differences and sample complexity issues were addressed using an LC×LC method that incorporates an optimized modulation strategy, namely smart active modulation, for the simultaneous analysis of cannabinoids and terpenes. The system was built by interposing an active flow splitter pump between both dimensions. This set up aimed to exploit the known advantages of LC×LC. In addition, here we proposed to use the splitter pump for online control over the splitting ratio to facilitate the selective dilution of different eluted fractions containing compounds with highly different concentrations. This work represents the first application and demonstration of smart active modulation (SAM) in LC×LC to simultaneously determine analytes with significant differences in concentration levels present in complex samples. The proposed method was tested with eight different strains, from which fingerprints were taken, and numerous cannabinoids and terpenes were identified in these samples. With this strategy, between 49 and 54 peaks were obtained in the LC×LC chromatograms corresponding to different strains. THCA-A was the main component in six strains, while CBDA was the main component in the other two strains. The main terpenes found were myrcene (in five strains), limonene (in two strains), and humulene (in one strain). Additionally, numerous other cannabinoids and terpenes were identified in these samples, providing valuable compositional information for growers, as well as medical and recreational users. The SAM strategy here proposed is simple and it can be extended to other complex matrices.


Assuntos
Canabinoides , Cannabis , Humanos , Canabinoides/análise , Cannabis/química , Terpenos/análise , Inflorescência/química , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão
20.
J Agric Food Chem ; 72(13): 6921-6930, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516700

RESUMO

Copper (Cu) is an element widely used as a pesticide for the control of plant diseases. Cu is also known to influence a range of plant secondary metabolisms. However, it is not known whether Cu influences the levels of the major metabolites in hemp (Cannabis sativa L.), tetrahydrocannabinol (THC) and cannabidiol (CBD). This study investigated the impact of Cu on the levels of these cannabinoids in two hemp cultivars, Wife and Merlot, under field conditions, as a function of harvest time (August-September), Cu type (nano, bulk, or ionic), and dose (50, 100, and 500 ppm). In Wife, Cu caused significant temporal increases in THC and CBD production during plant growth, reaching increases of 33% and 31% for THC and 51% and 16.5% for CBD by harvests 3 and 4, respectively. CuO nanoparticles at 50 and 100 ppm significantly increased THC and CBD levels, compared to the control, respectively, by 18% and 27% for THC and 19.9% and 33.6% for CBD. These nanospecific increases coincided with significantly more Cu in the inflorescences (buds) than in the control and bulk CuO treatments. Contrarily, no temporal induction of the cannabinoids by Cu was noticed in Merlot, suggesting a cultivar-specific response to Cu. However, overall, in Merlot, Cu ions, but not particulate Cu, induced THC and CBD levels by 27% and 36%, respectively, compared to the control. Collectively, our findings provide information with contrasting implications in the production of these cannabinoids, where, dependent on the cultivar, metabolite levels may rise above the 0.3% regulatory threshold for THC but to a more profitable level for CBD. Further investigations with a wider range of hemp cultivars, CuO nanoparticle (NP) doses, and harvest times would clarify the significance and broader implications of the findings.


Assuntos
Canabidiol , Canabinoides , Cannabis , Dronabinol/farmacologia , Cobre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...